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Abstract—We consider the problem of approximately solving
constraint satisfaction problems with arity k > 2 (k-CSPs) on
instances satisfying certain expansion properties, when viewed
as hypergraphs. Random instances of k-CSPs, which are also
highly expanding, are well-known to be hard to approximate
using known algorithmic techniques (and are widely believed
to be hard to approximate in polynomial time). However, we
show that this is not necessarily the case for instances where
the hypergraph is a high-dimensional expander.

We consider the spectral definition of high-dimensional
expansion used by Dinur and Kaufman [FOCS 2017] to
construct certain primitives related to PCPs. They measure
the expansion in terms of a parameter γ which is the analogue
of the second singular value for expanding graphs. Extending
the results by Barak, Raghavendra and Steurer [FOCS 2011]
for 2-CSPs, we show that if an instance of MAX k-CSP over
alphabet [q] is a high-dimensional expander with parameter
γ, then it is possible to approximate the maximum fraction
of satisfiable constraints up to an additive error ε using
qO(k) · (k/ε)O(1) levels of the sum-of-squares SDP hierarchy,
provided γ ≤ εO(1) · (1/(kq))O(k).

Based on our analysis, we also suggest a notion of threshold-
rank for hypergraphs, which can be used to extend the results
for approximating 2-CSPs on low threshold-rank graphs. We
show that if an instance of MAX k-CSP has threshold rank r
for a threshold τ = (ε/k)O(1) · (1/q)O(k), then it is possible
to approximately solve the instance up to additive error ε,
using r ·qO(k) ·(k/ε)O(1) levels of the sum-of-squares hierarchy.
As in the case of graphs, high-dimensional expanders (with
sufficiently small γ) have threshold rank 1 according to our
definition.
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I. INTRODUCTION

We consider the problem of approximately solving con-
straint satisfaction problems (CSPs) on instances satisfying
certain expansion properties. The role of expansion in un-
derstanding the approximability of CSPs with two variables
in each constraint (2-CSPs) has been extensively studied and
has led to several results, which can also be viewed as no-go
results for PCP constructions (since PCPs are hard instances
of CSPs). It was shown by Arora et al. [AKK+08] (and
strengthened by Makarychev and Makarychev [MM11]) that
the Unique Games problem is easily approximable on

expanding instances, thus proving that the Unique Games
Conjecture of Khot [Kho02] cannot be true for expanding
instances. Their results were extended to all 2-CSPs and sev-
eral partitioning problems in works by Barak, Raghavendra
and Steurer [BRS11], Guruswami and Sinop [GS11], and
Oveis Gharan and Trevisan [OGT15] under much weaker
notions of expansion.

We consider the following question:

When are expanding instances of k-CSPs easy for k > 2?

At first glance, the question does not make much sense,
since random instances of k-CSPs (which are also highly
expanding) are known to be hard for various models of com-
putation (see [KMOW17] for an excellent survey). However,
while the kind of expansion exhibited by random instances
of CSPs is useful for constructing codes, it is not sufficient
for constructing primitives for PCPs, such as locally testable
codes [BSHR05]. On the other hand, objects such as high-
dimensional expanders, which possess a form of “structured
multi-scale expansion” have been useful in constructing
derandomized direct-product and direct-sum tests (which can
be viewed as locally testable distance amplification codes)
[DK17], lattices with large distance [KM18], list-decodable
direct product codes [DHK+18], and are thought to be
intimately connected with PCPs [DK17]. Thus, from the
PCP perspective, it is more relevant to ask if this form of
expansion can be used to efficiently approximate constraint
satisfaction problems.

Connections to coding theory. Algorithmic results re-
lated to expanding CSPs are also relevant for the problem
of decoding locally testable codes. Consider a code C
constructed via k-local operations (such as k-fold direct-
sum) on a base code C0 with smaller distance. Then, a
codeword in C is simply an instance of a CSP, where each
bit places a constraint on k bits (which is k-XOR in case
of direct sum) of the relevant codeword in C0. The task
of decoding a noisy codeword is then equivalent to finding
an assignment in C0, satisfying the maximum number of
constraints for the above instance. Thus, algorithms for
solving CSPs on expanding instances may lead to new



decoding algorithms for codes obtained by applying local
operations to a base code. In fact, the list decoding algorithm
for direct-product codes by Dinur et al. [DHK+18] also
relied on algorithmic results for expanding unique games.
Since all constructions of locally testable codes need to
have at least some weak expansion [DK12], it is interesting
to understand what notions of expansion are amenable to
algorithmic techniques.

High-dimensional expanders and our results. A d-
dimensional expander is a downward-closed hypergraph
(simplicial complex), say X , with edges of size at most d+1,
such that for every hyperedge a ∈ X (with |a| ≤ d − 1),
a certain “neighborhood graph” G(Xa) is a spectral ex-
pander1. Here, the graph G(Xa) is defined to have the vertex
set {i | a ∪ {i} ∈ X} and edge-set {i, j | a ∪ {i, j} ∈ X}.
If the (normalized) second singular value of each of the
neighborhood graph is bounded by γ, X is said to be a
γ-high-dimensional expander (γ-HDX).

Note that (the downward closure of) a random sparse
(d + 1)-uniform hypergraph, say with n vertices and c · n
edges, is very unlikely to be a d-dimensional expander.
With high probability, no two hyperedges share more than
one vertex and thus for any i ∈ [n], the neighborhood
graph Gi is simply a disjoint union of cliques of size
d, which is very far from an expander. While random
hypergraphs do not yield high-dimensional expanders, such
objects are indeed known to exists via (surprising) algebraic
constructions [LSV05b], [LSV05a], [KO18a], [CTZ18] and
are known to have several interesting properties and applica-
tions [KKL16], [DHK+18], [KM17], [KO18b], [DDFH18],
[DK17], [PRT16].

Expander graphs can simply be thought of as the one-
dimensional case of the above definition. The results of
Barak, Raghavendra and Steurer [BRS11] for 2-CSPs yield
that if the constraint graph of a 2-CSP instance (with size n
and alphabet size q) is a sufficiently good (one dimensional)
spectral expander, then one can efficiently find solutions
satisfying OPT − ε fraction of constraints, where OPT
denotes the maximum fraction of constraints satisfiable by
any assignment. Their algorithm is based on (q/ε)O(1)

levels of the Sum-of-Squares (SoS) SDP hierarchy, and
the expansion requirement on the constraint graph is that
the (normalized) second singular value should be at most
(ε/q)O(1). We show a similar result for k-CSPs when the
corresponding simplicial complex XI, which is obtained by
including one hyperedge for each constraint and taking a
downward closure, is a sufficiently good (k−1)-dimensional
expander.

1While there are several definitions of high-dimensional expanders, we
consider the one by Dinur and Kaufman [DK17], which is most closely
related to spectral expansion, and was also the one shown to be related to
PCP applications. Our results also work for a weaker but more technical
definition by Dikstein et al. [DDFH18], which we defer till later.

Theorem I.1 (Informal). Let I be an instance of MAX
k-CSP on n variables taking values over an alphabet of
size q, and let ε > 0. Let the simplicial complex XI be
a γ-HDX with γ = εO(1) · (1/(kq))O(k). Then, there is an
algorithm based on (k/ε)O(1) · qO(k) levels of the Sum-of-
Squares hierarchy, which produces an assignment satisfying
OPT− ε fraction of the constraints.

Remark I.2. While the level-t relaxation for MAX k-
CSP can be solved in time (nq)O(t) [RW17], the rounding
algorithms used by [BRS11] and our work do not need
the full power of this relaxation. Instead, they are captured
by the “local rounding” framework of Guruswami and
Sinop [GS12] who show how to implement a local rounding
algorithm based on t levels of the SoS hierarchy, in time
qO(t) · nO(1) (where q denotes the alphabet size).

A complete version of our results with detailed proofs is
given in [AJT19].

Our techniques. We start by using essentially the same
argument for analyzing the SoS hierarchy as was used
by [BRS11] (specialized to the case of expanders). They
viewed the SoS solution as giving a joint distribution on
each pair of variables forming a constraint, and proved that
for sufficiently expanding graphs, these distributions can
be made close to product distributions, by conditioning on
a small number of variables (which governs the number
of levels required). Similarly, we consider the conditions
under which joint distributions on k-tuples corresponding to
constraints can be made close to product distributions. Since
the [BRS11] argument shows how to split a joint distribution
into two marginals, we can use it to recursively split a set of
size k into two smaller ones (one can think of all splitting
operations as forming a binary tree with k leaves).

However, our arguments differ in the kind of expansion
required to perform the above splitting operations. In the
case of 2-CSPs, one splits along the edges of the constraint
graph, and thus we only need the expansion of the contraint
graph (which is part of the assumption). However, in the
case of k-CSPs, we may split a set of size (ℓ1 + ℓ2) into
disjoint sets of size ℓ1 and ℓ2. This requires understanding
the expansion of the following family of (weighted) bipartite
graphs arising from the complex XI: The vertices in the
graph are sets of variables of size ℓ1 and ℓ2 that occur in
some constraint, and the weight of an edge {a1, a2} for a1∩
a2 = ∅, is proportional to the probability that a random
constraint contains a1 ⊔ a2. Note that this graph may be
weighted even if the k-CSP instance I is unweighted.

We view the above graphs as random walks, which we call
“swap walks” on the hyperedges (faces) in the complex X .
While several random walks on high-dimensional expanders
have been shown to have rapid mixing [KM17], [KO18b],
[DK17], [LLP17], we need a stronger condition. To apply
the argument from [BRS11], we not only need that the
second singular value is bounded away from one, but require



it to be an arbitrarily small constant (as a function of ε, k and
q). We show that this is indeed ensured by the condition that
a1 ∩ a2 = ∅, and obtain a bound of kO(k) · γ on the second
singular value. This bound, which constitutes much of the
technical work in the paper, is obtained by first expressing
these walks in terms of more canonical walks, and then using
the beautiful machinery of harmonic analysis on expanding
posets by Dikstein et al. [DDFH18] to understand their
spectra.

The swap walks analyzed above represent natural random
walks on simplicial complexes, and their properties may be
of independent interest for other applications. Just as the
high-dimensional expanders are viewed as “derandomized”
versions of the complete complex (containing all sets of size
at most k), one can view the swap walks as derandomized
versions of (bipartite) Kneser graphs, which have vertex sets(
[n]
ℓ1

)
and

(
[n]
ℓ2

)
, and edges (a, b) iff a ∩ b = ∅. We provide

a more detailed and technical overview in Section III after
discussing the relevant preliminaries in Section II.

High-dimensional threshold rank. The correlation
breaking method in [BRS11] can be applied as long as the
graph has low threshold rank i.e., the number of singular
values above a threshold τ = (ε/q)O(1) is bounded. Simi-
larly, the analysis described above can be applied, as long as
all the swap walks which arise when splitting the k-tuples
have bounded threshold rank. This suggests a notion of high-
dimensional threshold rank for hypergraphs (discussed in
Section VII), which can be defined in terms of the threshold
ranks of the relevant swap walks. We remark that it is easy to
show that dense hypergraphs (with Ω(nk) hyperedges) have
small-threshold rank according to this notion, and thus it can
be used to recover known algorithms for approximating k-
CSPs on dense instances [FK96] (as was true for threshold
rank in graphs).

Other related work. While we extend the approach taken
by [BRS11] for 2-CSPs, somewhat different approaches
were considered by Guruswami and Sinop [GS11], and
Oveis-Gharan and Trevisan [OGT15]. The work by Gu-
ruswami and Sinop relied on the expansion of the la-
bel extended graph, and used an analysis based on low-
dimensional approximations of the SDP solution. Oveis-
Gharan and Trevisan used low-threshold rank assumptions
to obtain a regularity lemma, which was then used to
approximate the CSP. For the case of k-CSPs, the Sherali-
Adams hierarchy can be used to solve instances with
bounded treewidth [WJ04] and approximately dense in-
stances [YZ14], [MR17]. Brandao and Harrow [BH13] also
extended the results by [BRS11] for 2-CSPs to the case of
2-local Hamiltonians. We show that their ideas can also be
used to prove a similar extension of our results to k-local
Hamiltonians on high-dimensional expanders.

In case of high-dimensional expanders, in addition to
canonical walks described here, a “non-lazy” version of
these walks (moving from s to t only if s ̸= t) was also con-

sidered by Kaufman and Oppenheim [KO18b], Anari et al.
[ALGV18] and Dikstein et al. [DDFH18]. The swap walks
studied in this paper were also considered independently in
a very recent work of Dikstein and Dinur [DD19] (under
the name "complement walks").

In a recent follow-up work [AJQ+19], the algorithms
developed here were also used to obtain new unique and
list decoding algorithms for direct sum and direct product
codes, obtained by “lifting" a base code C0 via k-local
operations to amplify distance. This work also showed
that the hypergraphs obtained by considering collections of
length-k walks on an expanding graph also satisfy (a slight
variant of) splittability, and admit similar algorithms.

II. PRELIMINARIES AND NOTATION

A. Linear Algebra

Recall that for an operator A : V → W between
two finite-dimensional inner product spaces V and W , the
operator norm can be written as

∥A∥op = sup
f,g ̸=0

⟨Af, g⟩
∥f∥ ∥g∥

.

Also, for such an A the adjoint A† : W → V is defined as
the (unique) operator satisfying ⟨Af, g⟩ = ⟨f,A†g⟩ for all
f ∈ V, g ∈ W . For A : V → W , we take ∥A∥op = σ1(A) ≥
σ2(A) ≥ · · · ≥ σr(A) > 0 to be its singular values in
descending order. Note that for A : V → V , σ2(A) denotes
its second largest eigenvalue in absolute value.

B. High-Dimensional Expanders

A high-dimensional expander (HDX) is a particular kind
of downward-closed hypergraph (simplicial complex) sat-
isfying an expansion requirement. We elaborate on these
properties and define well known natural walks on HDXs
below.

1) Simplicial Complexes:

Definition II.1. A simplicial complex X with ground set
[n] is a downward-closed collection of subsets of [n] i.e., for
all sets s ∈ X and t ⊆ s, we also have t ∈ X . The sets in
X are also referred to as faces of X .

We use the notation X(i) to denote the collection of all
faces s in X with |s| = i. When faces are of cardinality at
most d, we also use the notation X(≤ d) to denote all the
faces of X . By convention, we take X(0) := {∅}.

A simplicial complex X(≤ d) is said to be a pure
simplicial complex if every face of X is contained in
some face of size d. Note that in a pure simplicial complex
X(≤ d), the top slice X(d) completely determines the
complex.

Note that it is more common to associate a geometric
representation to simplicial complexes, with faces of car-
dinality i being referred to as faces of dimension i − 1
(and the collection being denoted by X(i − 1) instead of



X(i)). However, since we will only be treating these as
hypergraphs, we prefer to index faces by their cardinality,
to improve readability of related expressions.

An important simplicial complex is the complete complex.

Definition II.2 (Complete Complex ∆d(n)). We denote by
∆d(n) the complete complex with faces of size at most d
i.e., ∆d(n) := {s ⊆ [n] | |s| ≤ d}.

2) Walks and Measures on Simplicial Complexes: Let Ck

denote the space of real valued functions on X(k) i.e.,

Ck := {f | f : X(k) → R} ∼= RX(k).

We describe natural walks on simplicial complexes consid-
ered in [DK17], [DDFH18], [KO18b], as stochastic opera-
tors, which map functions in Ci to Ci+1 and vice-versa.

To define the stochastic operators associated with the
walks, we first need to describe a set of probability measures
which serve as the stationary measures for these random
walks. For a pure simplicial complex X(≤ d), we define
a collection of probability measures (Π1, . . .Πd), with Πi

giving a distribution on faces in the slice X(i).

Definition II.3 (Probability measures (Π1, . . . ,Πd)). Let
X(≤ d) be a pure simplicial complex and let Πd be an
arbitrary probability measure on X(d). We define a cou-
pled array of random variables (s(d), . . . , s(1)) as follows:
sample s(d) ∼ Πd and (recursively) for each i ∈ [d], take
s(i−1) to be a uniformly random subset of s(i), of size i−1.

The distributions Πd−1, . . . ,Π1 are then defined to
be the marginal distributions of the random variables
s(d−1), . . . , s(1) as defined above.

The following is immediate from the definition above.

Proposition II.4. Let a ∈ X(ℓ) be an arbitrary face. For
all j ≥ 0, one has∑

b∈X(ℓ+j):
b⊇a

Πℓ+j(b) =

(
ℓ+ j

j

)
·Πℓ(a).

For all k, we define the inner product of functions f, g ∈
Ck, according to associated measure Πk

⟨f, g⟩ = E
s∼Πk

[f(s)g(s)] =
∑

s∈X(k)

f(s)g(s) ·Πk(s) .

We now define the up and down operators Ui : C
i → Ci+1

and Di+1 : Ci+1 → Ci as

[Uig](s) = E
s′∈X(i),

s′⊆s

[g(s′)] =
1

i+ 1
·
∑
x∈s

g(s\{x})

[Di+1g](s) = E
s′∼Πi+1|s′⊃s

[g(s′)] ,

=
1

i+ 1
·
∑
x/∈s

g(s ⊔ {x}) · Πi+1(s ⊔ {x})
Πi(s)

.

An important consequence of the above definition is that Ui

and Di+1 are adjoints with respect to the inner products of
Ci and Ci+1.

Fact II.5. Ui = D†
i+1, i.e., ⟨Uif, g⟩ = ⟨f,Di+1g⟩ for every

f ∈ Ci and g ∈ Ci+1.

Note that the operators can be thought of as defining
random walks in a simplicial complex X(≤ d). The operator
Ui moves down from a face s ∈ X(i + 1) to a face
s′ ∈ X(i), but lifts a function g ∈ Ci up to a function
Ug ∈ Ci+1. Similarly, the operator Di+1 can be thought of
as defining a random walk which moves up from s ∈ X(i)
to s′ ∈ X(i + 1). It is easy to verify that these walks
respectively map the measure Πi+1 to Πi, and Πi to Πi+1.

3) High-Dimensional Expansion: We recall the notion
of high-dimensional expansion (defined via local spectral
expansion) considered by [DK17]. We first need a few pieces
of notation.

For a complex X(≤ d) and s ∈ X(i) for some i ∈ [d],
we denote by Xs the link complex

Xs := {t\s | s ⊆ t ∈ X} .

When |s| ≤ d − 2, we also associate a natural weighted
graph G(Xs) to a link Xs, with vertex set Xs(1) and edge-
set Xs(2). The edge-weights are taken to be proportional
to the measure Π2 on the complex Xs, which is in turn
proportional to the measure Π|s|+2 on X . The graph G(Xs)
is referred to as the skeleton of Xs. Dinur and Kauf-
man [DK17] define high-dimensional expansion in terms of
spectral expansion of the skeletons of the links.

Definition II.6 (γ-HDX from [DK17]). A simplicial com-
plex X(≤ d) is said to be γ-High Dimensional Expander
(γ-HDX) if for every 0 ≤ i ≤ d − 2 and for every
s ∈ X(i), the graph G(Xs) satisfies σ2(G(Xs)) ≤ γ,
where σ2(G(Xs)) denotes the second singular value of the
(normalized) adjacency matrix of G(Xs).

C. Constraint Satisfaction Problems (CSPs)

A k-CSP instance I = (H, C, w) with alphabet size q
consists of a k-uniform hypergraph, a set of constraints

C = {Ca ⊆ [q]a : a ∈ H},

and a non-negative weight function w ∈ RH
+ on the con-

straints, satisfying
∑

a∈H w(a) = 1.
A constraint Ca is said to be satisfied by an assignment η

if we have η|a ∈ Ca i.e., the restriction of η on a is contained
in Ca. We write, SATI(η) for the (weighted fraction of the
constraints) satisfied by the assignment η i.e.,

SATI(η) =
∑
a∈H

w(a) · 1[η|a ∈ Ca] = E
a∼w

1[η|a ∈ Ca] .

We denote by OPT(I) the maximum of SATI(η) over all
η ∈ [q]V (H).



Any k-uniform hypergraph H can be associated with a
pure simplicial complex in a canonical way by just setting
XI = {b : ∃ a ∈ H and a ⊇ b} – notice that XI(k) = H .
We will refer to this complex as the constraint complex of
the instance I. The probability distribution Πk on XI will
be derived from the weights function w of the constraint,
i.e

Πk(a) = w(a) ∀a ∈ XI(k) = H.

D. Sum-of-Squares Relaxations and t-local PSD Ensembles

The Sum-of-Squares (SoS) hierarchy gives a sequence
of increasingly tight semidefinite programming relaxations
for several optimization problems, including CSPs. Since
we will use relatively few facts about the SoS hierarchy,
already developed in the analysis of Barak, Raghavendra
and Steurer [BRS11], we will adapt their notation of t-
local distributions to describe the relaxations. For a k-CSP
instance I = (H, C, w) on n variables, we consider the
following semidefinite relaxation given by t-levels of the
SoS hierarchy, with vectors v(S,α) for all S ⊆ [n] with
|S| ≤ t, and all α ∈ [q]S . Here, for α1 ∈ [q]S1 and
α2 ∈ [q]S2 , α1◦α2 ∈ [q]S1∪S2 denotes the partial assignment
obtained by concatenating α1 and α2.

maximize E
a∼w

[ ∑
α∈Ca

∥v(a,α)∥2
]

=: SDP(I)

subject to
⟨
v(S1,α1), v(S2,α2)

⟩
= 0 ∀ α1|S1∩S2 ̸= α2|S1∩S2⟨

v(S1,α1), v(S2,α2)

⟩
=
⟨
v(S3,α3), v(S4,α4)

⟩
∀ S1 ∪ S2 = S3 ∪ S4,

α1 ◦ α2 = α3 ◦ α4∑
j∈[q]

∥v({i},j)∥2 = 1 ∀i ∈ [n]

∥v(∅,∅)∥ = 1

For any set S with |S| ≤ t, the vectors v(S,α) induce
a probability distribution µS over [q]S such that the assign-
ment α ∈ [q]S appears with probability ∥v(S,α)∥2. Moreover,
these distributions are consistent on intersections i.e., for
T ⊆ S ⊆ [n], we have µS|T = µT , where µS|T denotes
the restriction of the distribution µS to the set T . We use
these distributions to define a collection of random variables
Y1, . . . ,Yn taking values in [q], such that for any set S with
|S| ≤ t, the collection of variables {Yi}i∈S have a joint
distribution µS . Note that the entire collection (Y1, . . . ,Yn)
may not have a joint distribution: this property is only true
for sub-collections of size t. We will refer to the collection
(Y1, . . . ,Yn) as a t-local ensemble of random variables.

We also have that that for any T ⊆ [n] with |T | ≤ t− 2,
and any β ∈ [q]T , we can define a (t− |T |)-local ensemble
(Y′

1, . . . ,Y
′
n) by “conditioning” the local distributions on

the event YT = β, where YT is shorthand for the collection
{Yi}i∈T . For any S with |S| ≤ t − |T |, we define the
distribution of Y′

S as µ′
S := µS∪T |{YT = β}. Finally,

the semidefinite program also ensures that for any such

conditioning, the conditional covariance matrix

M(S1,α1)(S2,α2) = Cov
(
1[Y′

S1
= α1],1[Y

′
S2

= α2]
)

is positive semidefinite, where |S1| , |S2| ≤ (t−|T |)/2. Here,
for each pair S1, S2 the covariance is computed using the
joint distribution µ′

S1∪S2
. The PSD-ness be easily verified by

noticing that the above matrix can be written as the Gram
matrix of the vectors

w(S,α) :=
1

∥v(T,β)∥
· v(T∪S,β◦α) −

∥v(T∪S,β◦α)∥2

∥v(T,β)∥3
· v(T,β)

In this paper, we will only consider t-local ensembles such
that for every conditioning on a set of size at most t−2, the
conditional covariance matrix is PSD. We will refer to these
as t-local PSD ensembles. We will also need a simple
corollary of the above definitions.

Fact II.7. Let (Y1, . . . ,Yn) be a t-local PSD ensemble, and
let X be any simplicial complex with X(1) = [n]. Then, for
all s ≤ t/2, the collection {Ya}a∈X(≤s) is a (t/s)-local
PSD ensemble, where X(≤ s) =

⋃s
i=1 X(i).

For random variables YS in a t-local PSD ensemble, we
use the notation {YS} to denote the distribution of YS

(which exists when |S| ≤ t). We also define Var[YS ] as∑
α∈[q]S Var[1 [YS = α]].

III. PROOF OVERVIEW: APPROXIMATING MAX 4-XOR

We consider a simple example of a specific k-CSP, which
captures most of the key ideas in our proof. Let I be an
unweighted instance of 4-XOR on n Boolean variables.
Let H be a 4-uniform hypergraph on vertex set [n], with
a hyperedge corresponding to each constraint i.e., each
a = {i1, i2, i3, i4} ∈ H corresponds to a constraint in I
of the form

xi1 + xi2 + xi3 + xi4 = ba (mod 2) ,

for some ba ∈ {0, 1}. Let X denote the constraint complex
for the instance I such that X(1) = [n], X(4) = H and let
Π1, . . . ,Π4 be the associated distributions (with Π4 being
uniform on H).

Local vs global correlation: the BRS strategy. We first
recall the strategy used by [BRS11], which also suggests
a natural first step for our proof. Given a 2-CSP instance
with an associated graph G, and a t-local PSD ensemble
Y1, . . . ,Yn obtained from the SoS relaxation, they consider
if the “local correlation" of the ensemble is small across the
edges of G (which correspond to constraints) i.e.,

E
{i,j}∼G

∥{YiYj} − {Yi} {Yj}∥1 ≤ ε .

If the local correlation is indeed small, we easily produce an
assignment achieving a value SDP−ε in expectation, simply
by rounding each variable xi independently according to the
distribution {Yi}. On the other hand, if this is not satisfied,



they show (as a special case of their proof) that if G is
an expander with second eigenvalue λ ≤ c · (ε2/q2), then
variables also have a high “global correlation", between
a typical pair (i, j) ∈ [n]2. Here, q is the alphabet size
and c is a fixed constant. They use this to show that for
(Y′

1, . . . ,Y
′
n) obtained by conditioning on the value of a

randomly chosen Yi0 , we have

E
i
[Var [Yi]]− E

i0,Yi0

E
i
[Var [Y′

i]] ≥ Ω(ε2/q2) ,

where the expectations over i and i0 are both according
to the stationary distribution on the vertices of G. Since
the variance is bounded between 0 and 1, this essentially
shows that the local correlation must be at most ε after
conditioning on a set of size O(q2/ε2) (although the actual
argument requires a bit more care and needs to condition on
a somewhat larger set).

Extension to 4-XOR. As in [BRS11], we check if the t-
local PSD ensemble (Y1, . . . ,Yn) obtained from the SDP
solution satisfies

E
{i1,i2,i3,i4}∈H

∥{Yi1Yi2Yi3Yi4} − {Yi1} {Yi2} {Yi3} {Yi4}∥1 ≤ ε .

As before, independently sampling each xi from {Yi}
gives an expected value at least SDP− ε in this case. If the
above inequality is not satisfied, an application of triangle
inequality gives

E
{i1,i2,i3,i4}∈H

⎡⎢⎢⎣
{Yi1

Yi2
Yi3

Yi4

}
−

{
Yi1

Yi2

}{
Yi3

Yi4

}
1

+{Yi1Yi2

}
−

{
Yi1

}{
Yi2

}
1

+{Yi3Yi4

}
−

{
Yi3

}{
Yi4

}
1

⎤⎥⎥⎦ > ε .

Symmetrizing over all orderings of {i1, i2, i3, i4}, we can
write the above as

ε2 + 2 · ε1 > ε ,

which gives max {ε1, ε2} ≥ ε/3. Here,

ε1 := E
{i1,i2}∼Π2

∥{Yi1Yi2} − {Yi1} {Yi2}∥1 , and

ε2 := E
{i1,i2,i3,i4}∼Π4

∥{Yi1Yi2Yi3Yi4} − {Yi1Yi2} {Yi3Yi4}∥1

= E
{i1,i2,i3,i4}∼Π4

{Y{i1,i2}Y{i3,i4}
}
−
{
Y{i1,i2}

}{
Y{i3,i4}

}
1
.

As before, ε1 measures the local correlation across edges
of a weighted graph G1 with vertex set X(1) = [n] and
edge-weights given by Π2. Also, ε2 measures the analogous
quantity for a graph G2 with vertex set X(2) (pairs of
variables occurring in constraints) and edge-weights given
by Π4.

Recall that the result from [BRS11] can be applied to any
graph G over variables in a 2-local PSD ensemble, as long
as the σ2(G) is small. Since {Yi}i∈[n] and {Ys}s∈X(2) are
both (t/2)-local PSD ensembles (by Fact II.7), we will apply
the result to the graph G1 on the first ensemble and G2 on
the second ensemble. We consider the potential

Φ(Y1, . . . ,Yn) := E
i∼Π1

Var [Yi] + E
s∼Π2

Var [Ys] .

Since local correlation is large along at least one of the
graphs G1 and G2, using the above arguments (and the non-
decreasing nature of variance under conditioning) it is easy
to show that in expectation over the choice of {i0, j0} ∼
Π2 and β ∈ [q]2 chosen from

{
Y{i0,j0}

}
, the conditional

ensemble (Y′
1, . . . ,Y

′
n) satisfies

Φ(Y1, . . . ,Yn)− E
i0,j0,β

Φ(Y′
1, . . . ,Y

′
n) = Ω(ε2) ,

provided G1 and G2 satisfy σ2(G1), σ2(G2) ≤ c · ε2 for
an appropriate constant c.

The bound on the eigenvalue of G1 follows simply from
the fact that it is the skeleton of X , which is a γ-HDX.
Obtaining bounds on the eigenvalues of G2 and similar
higher-order graphs, constitutes much of the technical part of
this paper. Note that for a random sparse instance of MAX 4-
XOR, the graph G2 will be a matching with high probability
(since {i1, i2} in a constraint will only be connected to
{i3, i4} in the same constraint). However, we show that
in case of a γ-HDX, this graph has second eigenvalue
O(γ). We analyze these graphs in terms of modified high-
dimensional random walks, which we call “swap walks”.

We remark that our potential and choice of a “seed set” of
variables to condition on, is slightly different from [BRS11].
To decrease the potential function above, we need that for
each level X(i) (i = 1, 2 in the example above) the seed set
must contain sufficiently many independent samples from
X(i) sampled according to Πi. This can be ensured by draw-
ing independent samples from the top level X(k) (though
X(2) suffices in the above example). In contrast, the seed
set in [BRS11] consists of random samples from Π1. The
graph G2 defined above can be thought of as a random walk
on X(2), which starts at a face s ∈ X(2), moves up to a
face (constraint) s′ ∈ X(4) containing it, and then descends
to a face t ∈ X(2) such that t ⊂ s′ and s ∩ t = ∅ i.e., the
walk “swaps out” the elements in s for other elements in
s′. Several walks considered on simplicial complexes allow
for the possibility of a non-trivial intersection, and hence
have second eigenvalue lower bounded by a constant. On
the other hand, swap walks completely avoid any laziness
and thus turn out to have eigenvalues which can be made
arbitrarily small. To understand the eigenvalues for this walk,
we will express it in terms of other canonical walks defined
on simplicial complexes.

Recall that the up and down operators can be used
to define random walks on simplicial complexes. The up
operator Ui : C

i → Ci+1 defines a walk that moves down
from a face s ∈ X(i+ 1) to a random face t ∈ X(i), t ⊂ s
(the operator thus “lifts” a function in Ci to a function in
Ci+1). Similarly, the down operator Di : C

i → Ci−1 moves
up from a face s ∈ X(i − 1) to t ∈ X(i), t ⊃ s, with
probability Πi(t)/(i ·Πi−1(s)). These can be used to define
a canonical random walk

N
(u)
2,2 := D3 · · ·Du+2Uu+1 · · ·U2 , N

(u)
2,2 : C2 → C2 ,



which moves from up for u steps s ∈ X(2) to s′ ∈ X(u+
2), and then descends back to t ∈ X(2). Such walks were
analyzed optimally by Dinur and Kaufman [DK17], who
proved that λ2

(
N

(u)
2,2

)
= 2/(u + 2) ± Ou(γ) when X is

a γ-HDX. Thus, while this walk gives an expanding graph
with vertex set X(2), the second eigenvalue cannot be made
arbitrarily small for a fixed u (recall that we are interested
in showing that σ2(G2) ≤ c · ε2). However, note that we
are only interested in N

(2)
2,2 conditioned on the event that the

two elements from s are “swapped out” with new elements
in the final set t i.e., s ∩ t = ∅. We define

S
(u,j)
2,2 (s, t) :=

⎧⎨⎩
(u+2

2 )
(uj)·(

2
2−j)

· N(u)
2,2 if |t \ s| = j

0 otherwise
,

where the normalization is to ensure stochasticity of the
matrix. In this notation, the graph G2 corresponds to the
random-walk matrix S

(2,2)
2,2 . We show that while σ2(N

(2)
2,2) ≈

1/2, we have that σ2(S
(2,2)
2,2 ) = O(γ). We first write the

canonical walks in terms of the swap walks. Note that

N
(2)
2,2 =

1

6
· I +

2

3
· S(2,1)2,2 +

1

6
· S(2,2)2,2 ,

since the “descent” step from s′ ∈ X(4) containing s ∈
X(2), produces a t ∈ X(2) which “swaps out” 0, 1 and
2 elements with probabilities 1/6, 2/3 and 1/6 respectively.
Similarly,

N
(1)
2,2 =

1

3
· I +

2

3
· S(1,1)2,2 .

Finally, we use the fact (proved in Section IV) that while the
canonical walks do depend on the “height” u (i.e., N(u)

2,2 ̸=

N
(u′)
2,2 ) the swap walks (for a fixed number of swaps j) are

independent of the height to which they ascend! In particular,
we have

S
(2,1)
2,2 = S

(1,1)
2,2 .

Using these, we can derive an expression for the swap walk
S
(2,2)
2,2 as

S
(2,2)
2,2 = I + 6 ·N(2)

2,2−6 ·N(1)
2,2 = I + 6 ·(D3D4U3U2 − D3U2)

To understand the spectrum of operators such as the
ones given by the above expression, we use the beautiful
machinery for harmonic analysis over HDXs (and more
generally over expanding posets) developed by Dikstein et
al. [DDFH18]. They show how to decompose the spaces
Ck into approximate eigenfunctions for operators of the
form DU. Using these decompositions and the properties
of expanding posets, we can show that distinct eigenvalues
of the above operator are approximately the same (up to
O(γ) errors) when analyzing the walks on the complete
complex. Finally, we use the fact that swap walks in a
complete complex correspond to Kneser graphs (for which
the eigenvectors and eigenvalues are well-known) to show
that λ2(S

(2,2)
2,2 ) = O(γ).

Splittable CSPs and high-dimensional threshold rank.
We note that the ideas used above can be generalized (at
least) in two ways. In the analysis of distance from product
distribution for a 4-tuple of random variables forming a
contraint, we split it in 2-tuples. In general, we can choose
to split tuples in a k-CSP instance along any binary tree
T with k leaves, with each parent node corresponding to
a swap walk between tuples forming its children. Finally,
the analysis from [BRS11] also works if the each of the
swap walks in some T have a bounded number (say r)
of eigenvalues above some threshold τ , which provide a
notion of high-dimensional threshold rank for hypergraphs.
We refer to such an instance as a (T , τ, r)-splittable.

The arguments sketched above show that high-
dimensional expanders are (T , O(γ), 1)-splittable for
all T . Since the knowledge of T is only required in our
analysis and not in the algorithm, we say that rankτ (I) ≤ r
(or that I is (τ, r)-splittable) if I is (T , τ, r)-splittable
for any T . We defer the precise statement of results for
(τ, r)-splittable instances to Section VII.

IV. WALKS

It is important to note that both Ui and Di+1 are row-
stochastic matrices, i.e. we can think of them as the prob-
ability matrices describing the movement of a walk from
X(i+ 1) to X(i); and from X(i) to X(i+ 1) respectively.

Concretely, we will think [D⊤
i+1es](t) as the probabliity

of the walk moving up from s ∈ X(i) to t ∈ X(i + 1).
Similarly, we will think of [U⊤

i et](s) as the walk moving
down from t ∈ X(i+ 1) to s ∈ X(i).

By referring to the definition of the up and down operators
in Section II, we observe

[D⊤
i+1es](t) =

1[t ⊇ s]

i+ 1

Πi+1(t)

Πi(s)
and [U⊤

i et](s) =
1[s ⊆ t]

i+ 1
.

With this observation it is easy to see that our notion
of random walk respects the probability distributions Πj ,
i.e. we have

U⊤
i Πi+1 = Πi and D⊤

i+1Πi = Πi+1,

i.e., randomly moving up from a sample of Πj gives a
sample of Πj+1 and similarly, moving down from a sample
of Πj+1 results in a sample of Πj .

Instead of going up and down by one dimension, one
can try going up or down by multiple dimensions since
(Di+1 · · ·Di+ℓ) and (Ui+ℓ · · ·Ui) are still row-stochastic
matrices. Further, the corresponding probability vectors still
have intuitive explanations in terms of the distributions Πj .
For a face s ∈ X(k), we introduce the notation

p
(u)
s = (Dk+1 · · ·Dk+u)

⊤
es

where we take p
(0)
s = es. This notation will be used to

denote the probability distribution of the up-walk starting



from s ∈ X(k) and ending in a random face t ∈ X(k + u)
satisfying t ⊇ s.

Note that the following Lemma together with Proposi-
tion II.4 implies that p(u)s is indeed a probability distribution.

Proposition IV.1. For s ∈ X(k) and a ∈ X(k + u) one
has,

p
(u)
s (a) = 1[a ⊇ s] · 1(

k+u
u

) · Πk+u(a)

Πk(s)
.

Similarly, we introduce the notation q
(u)
a , as

q
(u)
a (s) = (Uk+u−1 · · ·Uk)

⊤
es,

i.e. for the probability distribution of the down-walk starting
from a ∈ X(k + u) and ending in a random face of
X(k) contained in a. The following can be verified using
Proposition IV.1, and the fact that (Uk+u−1 · · ·Uk)

†
=

Dk+u · · ·Dk+1.

Corollary IV.2. Let X(≤ d) be a simplicial complex, and
k, u ≥ 0 be parameters satisfying k + u ≤ d. For a ∈
X(k + u) and s ∈ X(k), one has

q
(u)
a (s) =

1(
k+u
u

) · 1[s ⊆ a].

In the remainder of this section, we will try to construct
more intricate walks on X from X(k) to X(l).

A. The Canonical and the Swap Walks on a Simplicial
Complex

Definition IV.3 (Canonical and Swap u-Walks). Let d ≥ 0,
X(≤ d) be a simplicial complex, and k, l, u ≥ 0 be
parameters satisfying l ≤ k, u ≤ l and d ≥ k + u;
where the constraints on these parameters are to ensure
well-definedness. We will define the following random walks,

- canonical u-walk from X(k) to X(l). Let N(u)
k,l be the

(row-stochastic) Markov operator that represents the
following random walk: Starting from a face s ∈ X(k),

– (random ascent/up-walk) randomly move up a face
s′′ ∈ X(k+u) that contains s, where s′′ is picked
with probability

p
(u)
s (s′′) = [(Dk+1 · · ·Dk+u)

⊤
es](s

′′).

– (random descent/down-walk) go to a face s′ ∈
X(l) picked uniformly among all the l-dimensional
faces that are contained in s′′, i.e., the set s′ is
picked with probability

qs′′(s
′) =

1[s′ ⊆ s′′](
k+u
l

) = [(Uk+u−1 · · ·Ul)
⊤
es′′ ](s

′).

The operator N
(u)
k,l : C

l → Ck satisfies the following
equation,

N
(u)
k,l = Dk+1 · · ·Dk+uUk+u−1 · Uk · · ·Ul.

Notice that we have N
(0)
k,k = I, and N

(0)
k,l = (Uk−1 . . .Ul)

for l < k.
- swapping walk from X(k) to X(l). Let Sk,l be the

Markov operator that represents the following random
walk: Starting from a face s ∈ X(k),

– (random ascent/up-walk) randomly move up to a
face s′′ ∈ X(k+l) that contains s, where as before
s′′ is picked with probability

p
(l)
s (s′′) = [(Dk+1 · · ·Dk+l+1)

⊤
es](s

′′).

– (deterministic descent) deterministically go to s′ =
s′′\s ∈ X(l).

For our applications, we will need to show that the
walk Sk,l has good spectral expansion whenever X is
a d-dimensional γ-expander, for γ sufficiently small. To
show this, we will relate the swapping walk operator
Sk,l on X to the canonical random walk operators N

(u)
k,l

(q.v. Lemma IV.4).
By the machinery of expanding posets (q.v. Section V) it

is possible to argue that the spectral expansion of the random
walk operator N(u)

k,l on a high dimensional expander will be
close to that of the complete complex. This will allow us
to conclude using the relation between the swapping walks
and the canonical walks (q.v. Lemma IV.4) that the spectral
expansion of the swapping walk on X , will be comparable
with the spectral expansion of the swap walk on the complete
complex. More precisely, we will show

Lemma IV.4 (Lemma V.34). For any d, k, l ≥ 0, and the
complete simplicial simplicial complex X(≤ d), one has the
following: If k ≥ l ≥ 0 and d ≥ k + l, we have

σ2(Sk,l) = Ok,l

(
1

n

)
.

Using these two, and the expanding poset machinery, we
will conclude

Theorem IV.5 (Theorem V.2 simplified). Let X be a d-
dimensional γ expander. If k ≥ l ≥ 0 satisfy d ≥ l + k we
have,

σ2(Sk,l) = Ok,l(γ)

where Sk,l is the swapping walk on X from X(k) to X(l).

To prove Theorem IV.5 we will need to define an interme-
diate random walk that we will call the j-swapping u-walk
from X(k) to X(l):

Definition IV.6 (j-swapping u-walk from X(k) to X(l)).
Given d, u, j, k, l ≥ 0 satisfying l ≤ k, j ≤ u, u ≤ l,
and d ≥ k + u. Let S

(u,j)
k,l be the Markov operator that

represents the following random walk from X(k) to X(l)
on a d-dimensional simplicial complex X: Starting from s ∈
X(k)



- (random ascent/up-walk) randomly move up to a face
s′′ ∈ X(k+u) that contains s, where s′′ is picked with
probability

p
(u)
s (s′′) = [(Dk+1 · · ·Dk+u)

⊤
es](s

′′).

- (conditioned descent) go to a face s′ ∈ X(l) sampled
uniformly among all the subsets of s′′ ∈ X(k+u) that
have intersection j with s′′\s, i.e. |s′ ∩ (s′′\s)| = j.

Notice that Sk,l = S
(l,l)
k,l for any k and I = S

(u,0)
k,k for any u.

Remark IV.7. We will prove that the parameter u does not
effect the swapping walk S

(u,j)
k,l so long as u ≥ j, i.e. for

all u, u′ ≥ j we have S
(u′,j)
k,l = S

(u,j)
k,l . Thus, we will often

write S
(j)
k,l for S

(j,j)
k,l .

B. Swap Walks are Height Independent

Recall that the swap walk S
(u,j)
k,l is the conditional walk

defined in terms of N
(u)
k,l where s ∈ X(k) is connected to

t ∈ X(l) only if |t \ s| = j. The parameter u is called the
height of the walk, namely the number of times it moves up.
Since up and down operators have second singular value
bounded away from 1, the second singular value of N

(u)
k,l

shrinks as u increases. In other words, the operator N
(u)
k,l

depends on the height u. Surprisingly, the walk S
(u,j)
k,l which

is defined in terms of N(u)
k,l does not depend on the particular

choice of u as long as it is well defined. More precisely, we
have the following result.

Lemma IV.8. If X is a d-dimensional simplicial complex,
0 ≤ l ≤ k, and u, u′ ∈ [j, d− k], then

S
(u,j)
k,l = S

(u′,j)
k,l .

In order to obtain Lemma IV.8, we will need a simple
proposition:

Proposition IV.9. Let s ∈ X(k), s′ ⊆ s and |t′| = j.
Suppose s′ ⊔ t′ ∈ X(l). Then, we have

S
(u,j)
k,l (s, s′ ⊔ t′) =

1(
k

l−j

)
·
(
u
j

) · ∑
a∈X(k+u):

a⊇(s⊔t′)

p
(u)
s (a).

Lemma IV.10 (Height Independence). Let u ∈ [j, d−k]. For
any s ∈ X(k), s′ ⊆ s and t′ ∈ X(j) satisfying s′⊔t′ ∈ X(l)
we have the following,

S
(u,j)
k,l (s, s′ ⊔ t′) =

1(
k

l−j

)(
k+j
j

) · Πk+j(s ⊔ t′)

Πk(s)
.

In particular, the choice of u ∈ [j, d− k] does not affect the
swap walk.

Since the choice of u does not affect the formula, we
obtain Lemma IV.8.

C. Canonical Walks in Terms of the Swap Walks

We show that the canonical walks are given by an average
of swap walks with respect to the hypergeometric distribu-
tion.

Lemma IV.11. Let u, l, k, d ≥ 0 be given satisfying l ≤ k
and u ≤ l. Then, we have the following formula for the
canonical u-walk on any X(≤ d) satisfying d ≥ k + u

N
(u)
k,l =

u∑
j=0

(
u
j

)(
k

l−j

)(
k+u
l

) · S(j)k,l .

D. Inversion: Swap Walks in Terms of Canonical Walks

We show how the swap walks can be obtained as a signed
sum of canonical walks. This result follows from binomial
inversion which we recall next.

Fact IV.12 (Binomial Inversion, [BS02]). Let
(an)n≥0, (bn)n≥0 be arbitrary sequences. Suppose for
all n ≥ 0 we have,

bn =

n∑
j=0

(
n

j

)
· (−1)j · aj .

Then, we also have

an =

n∑
j=0

(
n

j

)
· (−1)j · bj .

Corollary IV.13. Let k, l, d ≥ 0 be given parameters such
that k + l ≤ d and k ≥ l. For any simplicial complex
X(≤ d), one has the following formula for the u-swapping
walk from X(k) to X(l) in terms of the canonical j-walks:(

k

l − u

)
S
(u)
k,l =

u∑
j=0

(−1)u−j ·
(
k + j

l

)
·
(
u

j

)
· N(j)

k,l .

V. SPECTRAL ANALYSIS OF SWAP WALKS

Swap walks arise naturally in our k-CSPs approximation
scheme on HDXs where the running time and the quality of
approximation depend on the expansion of these walks. For
this reason, we analyze the spectra of swap walks. We show
that swap walks Sk,k of γ-HDXs are indeed expanding for
γ sufficiently small. More precisely, the first main result of
this section is the following.

Theorem V.1 (Swap Walk Spectral Bound). Let X(≤ d)
be a γ-HDX with d ≥ 2k. Then the second largest singular
value σ2(Sk,k) of the swap operator Sk,k is

σ2(Sk,k) ≤ γ ·
(
27 · k4 · 23k · kk

)
.

Theorem V.1 is enough for the analysis of our k-CSP
approximation scheme when k is a power of two. However,
to analyze general k-CSPs on HDXs we need to understand
the spectra of general swap walks Sk,l where k may differ
from l. Therefore, we generalize the spectral analysis of Sk,k



above to Sk,l obtaining Theorem V.2, our second main result
of this section.

Theorem V.2 (Rectangular Swap Walk Spectral Bound).
Suppose X(≤ d) is a γ-HDX with d ≥ k + l and k ≤ l.
Then the largest non-trivial singular value σ2(Sk,l) of the
swap operator Sk,l is

σ2(Sk,l) ≤
√

γ · (28 · k2ℓ2 · 22k+4l · kk).

A. Square Swap Walks Sk,k

We prove Theorem V.1 by connecting the spectral struc-
ture of Sk,k of general γ-HDXs to the well behaved case
of complete simplicial complexes. To distinguish these two
cases we denote by S∆k,k the swap Sk,k of complete com-
plexes 2. In fact, S∆k,k is the random walk operator of the
well known Kneser graph K(n, k) (see Definition V.3).

Definition V.3 (Kneser Graph K(n, k) [GM15]). The
Kneser graph K(n, k) is the graph G = (V,E) where
V =

(
[n]
k

)
and E = {{s, t} | s ∩ t = ∅}.

Then at least for complete complexes we know that S∆k,k
is expanding. This is a direct consequence of Fact V.4.

Fact V.4 (Kneser Graph [GM15]). The singular values 3 of
the Kneser graph K(n, k) are(

n− k − i

k − i

)
,

for i = 0, . . . , k.

This means that σ2(S
∆
k,k) = Ok(1/n) as shown

in Claim V.5.

Claim V.5. Let d ≥ 2k and ∆d(n) be the complete complex.
The second largest singular value σ2(S

∆
k,k) of the swap

operator S∆k,k on ∆d(n) is

σ2(S
∆
k,k) =

k

n− k
,

provided n ≥ Mk where Mk ∈ N only depends on k.

Therefore, if we could claim that σ2(Sk,k) of an arbitrary
γ-HDX is close to σ2(S

∆
k,k) (provided γ is sufficiently

small), we would conclude that general Sk,k walks are also
expanding. A priori there is no reason why this claim should
hold since a general d-sized γ-HDX may have much fewer
hyperedges (Od(n) versus

(
n
d

)
in the complete ∆d(n)).

Fortunately, it turns out that this claim is indeed true (up
to Ok(γ) errors).

2The precise parameters of the complete complex ∆d(n) where S∆k,k
lives will not be important. We only require that S∆k,k is well defined in
the sense that d ≥ 2k and n > d.

3The precise eigenvalues are also well known, but singular values are
enough in our analysis.

To prove Theorem V.14 we employ the beautiful expand-
ing poset (EPoset) machinery of Dikstein et al. [DDFH18].
Before we delve into the full technical analysis, it might
be instructive to see how Theorem V.1 is obtained from
understanding the quadratic form ⟨Sk,kf, f⟩ where f ∈ Ck.

First we informally recall the decomposition Ck =∑k
i=0 C

k
i from the EPoset machinery where Ck

i can be
thought of as the space of approximate eigenfunctions of
degree i of Ck (the precise definitions are deferred to V-B).
In this decomposition, Ck

0 is defined as the space of constant
functions of Ck.

We prove the stronger result that the Sk,k operators of
any γ-HDX has an an approximate spectrum that only
depends on k provided γ is small enough. More precisely,
we prove Lemma V.6.

Lemma V.6 (Swap Quadratic Form). Let f =
∑k

i=0 fi with
fi ∈ Ck

i . Suppose X(≤ d) is a γ-HDX with d ≥ 2k. If
γ ≤ ε

(
64kk+423k+1

)−1
, then

⟨Sk,kf, f⟩ =

k∑
i=0

λk(i) · ⟨fi, fi⟩ ± ε,

where λk(i) depends only on k and i, i.e., λk(i) is an
approximate eigenvalue of Sk,k associated to space Ck

i .

Remark V.7. From Lemma V.6, it might seem that we
are done since there exist approximate eigenvalues λk(i)
that only depend on k and i. However, giving an explicit
expression for these approximate eigenvalues is tricky. For
this reason, we rely on the expansion of Kneser graphs as
will be clear later.

Towards showing Lemma V.6, we introduce the notion of
balanced operators which in particular captures canonical
and swap walks and we show that the quadratic form
expression of Lemma V.6 is a particular case of a general
result for ⟨Bf, f⟩ where B is a general balanced operator. A
balanced operator in Ck is any operator that can be obtained
as linear combination of pure balanced operators, the later
being operators that are a formal product of an equal number
of up and down operators.

Lemma V.8 (General Quadratic Form). Let ε ∈ (0, 1) and
let Y ⊆ {Y | Y : Ck → Ck} be a collection of formal
operators that are product of an equal number of up and
down walks (i.e., pure balanced operators) not exceeding ℓ
walks. Let B =

∑
Y∈Y αYY where αY ∈ R and let f =∑k

i=0 fi with fi ∈ Ck
i . If γ ≤ ε

(
16kk+2ℓ2

∑
Y∈Y |αY|

)−1
,

then

⟨Bf, f⟩ =

k∑
i=0

(∑
Y∈Y

αYλY
k (i)

)
· ⟨fi, fi⟩ ± ε,

4Due to space constraints, we will omit some details. The full proof can
be found in the full version of our paper [AJT19]



where λY
k (i) depends only on the operators appearing in

the formal expression of Y, i and k, i.e., λY
k (i) is the

approximate eigenvalue of Y associated to Ck
i .

Remark V.9. Note that our result generalizes the anal-
ysis of [DDFH18] for expanding posets of HDXs which
considered the particular case B = Dk+1Uk. Moreover,
their error term analysis treated all the parameters not
depending on the number of vertices n as constants. In this
work we make the dependence on the parameters explicit
since this dependence is important in understanding the
limits of our k-CSPs approximation scheme on HDXs. The
beautiful EPoset machinery [DDFH18] is instrumental in
our analysis.

Now, we are ready to prove Theorem V.1. For convenience
we restate it below.

Theorem V.10 (Swap Walk Spectral Bound (restatement
of Theorem V.1)). Let X(≤ d) be a γ-HDX with d ≥ 2k.
For every σ ∈ (0, 1), if γ ≤ σ ·

(
64kk+423k+1

)−1
, then the

second largest singular value σ2(Sk,k) of the swap operator
Sk,k is

σ2(Sk,k) ≤ σ.

B. Expanding Posets and Balanced Operators

We state the definitions used in our technical proofs
starting with γ-EPoset from [DDFH18].

Definition V.11 (γ-EPoset adapted from [DDFH18]). A
complex X(≤ d) with operators U0, . . . ,Ud−1, D1, . . . ,Dd

is said to be a γ-EPoset 5 providedM+
i − Ui−1Di


op ≤ γ, (1)

for every i = 1, . . . , d− 1, where

M+
i :=

i+ 1

i

(
Di+1Ui −

1

i+ 1
I

)
,

i.e., M+
i is the non-lazy version of the random walk N

(1)
i,i =

Di+1Ui.

Definition V.11 can be directly used as an operational def-
inition of high-dimension expansion as done in [DDFH18].
To us it is important that γ-HDXs are also γ-EPosets as
established in Lemma V.12. In fact, these two notions are
known to be closely related.

Lemma V.12 (From [DDFH18]). Let X be a d-sized sim-
plicial complex.

- If X is a γ-HDX, then X is a γ-EPoset.
- If X is a γ-EPoset, then X is a 3dγ-HDX.

5We tailor their general EPoset definition to HDXs. In fact, what they
call γ-HDX we call γ-EPoset. Moreover, what they call γ-HD expander
we call γ-HDX.

Naturally the complete complex ∆d(n) is a γ-EPoset
since it is a γ-HDX. Moreover, in this particular case γ
vanishes as n grows.

Lemma V.13 (From [DDFH18]). The complete complex
∆d(n) is a γ-EPoset with γ = Od (1/n).

Harmonic Analysis on Simplicial Complexes: The space
Ck defined in Section II-B2 can be decomposed into sub-
spaces Ck

i of functions of degree i for 0 ≤ i ≤ k where

Ck
i := {Uk−ihi | hi ∈ Hi},

with Hi := ker (Di), and

Ck
0 := {f : X(k) → R | f is constant}.

More precisely, we have the following.

Lemma V.14 (From [DDFH18]).

Ck =

k∑
i=0

Ck
i .

For convenience set δ⃗ ∈ Rd−1 such that δi = 1/(i + 1)
for i ∈ [d − 1]. It will also be convenient to work with the
following equivalent version of Eq. (1)

∥Di+1Ui − (1− δi)Ui−1Di − δiI∥op ≤ i

i+ 1
γ. (2)

Towards our goal of understanding quadratic forms of
swap operators we study the approximate spectrum of op-
erators of the form Y = Yℓ . . .Y1 where each Yi is either
an up or down operator, namely, Y is a generalized random
walk of ℓ steps. We regard the expression Yℓ . . .Y1 defining
Y as a formal product.

Definition V.15 (Pure Balanced Operator). We call
Y : Ck → Ck a pure balanced operator if Y can be defined
as product Yℓ . . .Y1

6 where each Yi is either an up or down
operator. When we say that the spectrum of Y depends on Y
we mean that it depends on k and on the formal expression
Yℓ . . .Y1 (i.e., pattern of up and down operators).

Remark V.16. By definition canonical walks N
(u)
k,k are pure

balanced operators.

Taking linear combinations of pure balanced operators
leads to the notion of balanced operators.

Definition V.17 (Balanced Operator). We call B : Ck →
Ck a balanced operator provided there exists a set of pure
balanced operators Y such that

B =
∑
Y∈Y

αY · Y,

where αY ∈ R.

6For the analysis it is convenient to order the indices appearing in
Yℓ . . .Y1 in decreasing order from left to right.



Remark V.18. Corollary IV.13 establishes that S(u)k,k are bal-
anced operators. In particular, Sk,k is a balanced operator.

It turns out that at a more crude level the behavior of Y is
governed by how the number of up operators compares to the
number of down operators. For this reason, it is convenient
to define U(Y) = {Yi | Yi is an up operator} and D(Y) =
{Yi | Yi is a down operator} where Y is a pure balanced
operator. When Y is clear in the context we use U = U(Y)
and D = D(Y).

Henceforth we assume hi ∈ Hi = ker (Di), fi ∈ Ck
i and

g ∈ Ck. This convention will make the statements of the
technical results of Section V-C cleaner.

C. Quadratic Forms over Balanced Operators

Now we establish all the technical results leading to and
including the analysis of quadratic forms over balanced
operators. By considering this general class of operators our
analysis generalizes the analysis given in [DDFH18]. At the
same time we refine their error terms analysis by making
the dependence on the EPoset parameters explicit. Recall
that an explicit dependence on these parameters is important
in understanding the limits of our k-CSP approximation
scheme.

Lemma V.19 (General Quadratic Form (restatement
of Lemma V.8)). Let ε ∈ (0, 1) and let Y ⊆ {Y | Y : Ck →
Ck} be a collection of formal operators that are product of
an equal number of up and down walks (i.e., pure balanced
operators) not exceeding ℓ walks. Let B =

∑
Y∈Y αYY

where αY ∈ R and let f =
∑k

i=0 fi with fi ∈ Ck
i . If

γ ≤ ε
(
16kk+2ℓ2

∑
Y∈Y |αY|

)−1
, then

⟨Bf, f⟩ =

k∑
i=0

(∑
Y∈Y

αYλY
k (i)

)
· ⟨fi, fi⟩ ± ε,

where λY
k (i) depends only on the operators appearing in

the formal expression of Y, i and k, i.e., λY
k (i) is the

approximate eigenvalue of Y associated to Ck
i .

Since swap walks are balanced operators, we will deduce
the following.

Lemma V.20 (Swap Quadratic Form (restatement
of Lemma V.6)). Let f =

∑k
i=0 fi with fi ∈ Ck

i .
Suppose X(≤ d) is a γ-HDX with d ≥ 2k. If
γ ≤ ε

(
64kk+423k+1

)−1
, then

⟨Sk,kf, f⟩ =

k∑
i=0

λk(i) · ⟨fi, fi⟩ ± ε,

where λk(i) depends on only on k an i, i.e., λk(i) is an
approximate eigenvalue of Sk,k associated to space Ck

i .

The next result, Lemma V.21, (implicit in [DDFH18]) will
be key in establishing that the spectral structure of γ-EPosets
is fully determined by the parameters in δ⃗ provided γ is

small enough. Note that the Eposet Definition V.11 provides
a “calculus” for rearranging a single pair of up and down
DU. The next result treats the more general case of DU · · ·U.

Lemma V.21 (Structure Lemma). Suppose |D| = 1. Let
Yc ∈ D be the unique down operator in Yℓ . . .Y1. If
∥A∥op ≤ 1, then

⟨AYℓ . . .Y1hi, g⟩ =

⎧⎪⎨⎪⎩
0 if ℓ = 1 or

c = 1

Qc,i(δ⃗) · ⟨AUℓ−2hi, g⟩ ± (c − 1) · γ ∥hi∥ ∥g∥ otherwise,

where Qc,i is a polynomial in the variables δ⃗ depending on
c, i such that Qc,i(δ⃗) ≤ 1.

With Lemma V.21 we are close to recover the approximate
spectrum of Dk+1Uk from [DDFH18]. However, in our
application we will need to analyze more general operators,
namely, pure balanced and balanced operators.

Lemma V.22 (Refinement of [DDFH18]). If ∥A∥op ≤ 1,
then

⟨ADk+1Ukfi, g⟩ = λi · ⟨Afi, g⟩ ± (k− i+1) ·γ ∥hi∥ ∥g∥ ,

where λi = Qk−i+2,i(δ⃗).

Then powers of the operator Dk+1Uk behave as expected.

Lemma V.23 (Exponentiation Lemma).

⟨(Dk+1Uk)
s
fi, fi⟩ = λs

i ·∥fi∥
2 ± s·(k−i+1)·γ ∥hi∥ ∥fi∥ ,

where λi is given in Lemma V.22.

In case |D| > |U|, Y : Ci → Cj is an operator whose
kernel approximately contains ker(Di) as the following
lemma makes precise.

Lemma V.24 (Refinement of [DDFH18]). If |D| > |U| and
hi ∈ ker (Di), then

⟨AYℓ . . .Y1hi, g⟩ = ± ℓ2 · γ ∥hi∥ ∥g∥ ,

provided ∥A∥op ≤ 1.

We turn to an important particular case of |D| = |U|,
namely, the canonical walks. We show that N(u)

k,k is approxi-
mately a polynomial in the operator Dk+1Uk. As a warm
up consider the case N

(2)
k,k = Dk+1Dk+2Uk+1Uk. Using

the Eq. (2), we get

N
(2)
k,k ≈ (1− δk+1) · Dk+1UkDk+1Uk + δk+1 · Dk+1Uk

= (1− δk+1) · (Dk+1Uk)
2

+ δk+1 · Dk+1Uk.

Inspecting this polynomial more carefully we see that that
its coefficients form a probability distribution. This property
holds in general as the following Lemma V.25 shows. This
gives an alternative (approximate) random walk interpre-
tation of N

(u)
k,k as the walk that first selects the power s



according to the distribution encoded in the polynomial and
then moves according to (Dk+1Uk)

s.

Lemma V.25 (Canonical Polynomials). For k, u ≥ 0 there
exists a degree u univariate polynomial FN

u,k,δ⃗
depending

only on u, k, δ⃗ such thatN(u)
k,k − FN

u,k,δ⃗
(Dk+1Uk)


op

≤ (u− 1)2 · γ.

Moreover, the coefficients of this polynomial form a prob-
ability distribution, i.e., FN

u,k,δ⃗
(x) =

∑u
i=0 cix

i where∑u
i=0 ci = 1 and ci ≥ 0 for i = 0, . . . , u.

Remark V.26. Having a polynomial expression
FN
u,k,δ⃗

(Dk+1Uk) ≈ N
(u)
k,k and knowing that Sk,k can

be written as linear combination of canonical walks,
we could deduce that Sk,k is also approximately a
polynomial in Dk+1Uk. Using an error refined version of
the Lemma V.23 (showing that exponentiation of Dk+1Uk

behaves naturally), we could deduce the approximate
spectrum of Sk,k. We avoid this approach since it analysis
introduces unnecessary error terms and we can understand
quadratic forms of pure balanced operators directly.

Remark V.27. The canonical polynomial FN
u,k,δ⃗

(Dk+1Uk)

is used later in the error analysis that relates the norms
∥hi∥ and ∥fi∥ (Lemma V.30).

Now we consider Y where |D| = |U| in full generality.
We show how the quadratic form of Y behaves in terms of
the approximate eigenspace decomposition Ck =

∑k
i=0 C

k
i .

Lemma V.28 (Pure Balanced Walks). Suppose Y =
Yℓ . . .Y1 is a product of an equal number of up and down
operators, i.e., |D| = |U|. Then for fi ∈ Ck

i

⟨Yfi, fi⟩ = λY
k,i ·⟨fi, fi⟩ ± γ ·(ℓ2+ℓ(k−i−1)) ∥hi∥ ∥fi∥ ,

where λY
k,i is an approximate eigenvalue depending only on

Y, k and i.

To understand all errors in the analysis in Lemma V.28we
need to use the approximate orthogonality of fi and fj for
i ̸= j from [DDFH18] in more detail. We start with the
following bound in terms of hi, hj .

Lemma V.29 (Refinement of [DDFH18]). For i ̸= j,

⟨fi, fj⟩ = ± (2k − i− j)2 · γ ∥hi∥ ∥hj∥ .
To give a bound for Lemma V.29 only in terms of the

eigenfunction norms ∥fi∥ and not in terms of ∥hi∥, we need
to understand how the norms of hi and fi are related.

Lemma V.30 (Refinement of [DDFH18]). Let ηk,i =

(k − i)2 + 1 and let βi =

√⏐⏐⏐FN
k−i,i,δ⃗

(δi)± γ · ηk,i
⏐⏐⏐

where FN
k−i,k,δ⃗

is a canonical polynomial of degree k − i

from Lemma V.25. Then

⟨fi, fi⟩ = β2
i · ⟨hi, hi⟩.

Let θk,i = (i+ 1)
k−i. Furthermore, if γ ≤ 1/(2 · ηk,i · θk,i),

then βi ≥ 1
2θk,i

.

Now, we can state the approximate orthogonal-
ity Lemma V.31 in terms of the eigenfunction norms.

Lemma V.31 (Approximate Orthogonality (refinement
of [DDFH18])). Let ηk,s, θk,s, βs for s ∈ {i, j} be given
as in Lemma V.30. If i ̸= j and βi, βj > 0, then

⟨fi, fj⟩ = ± γ · (2k − i− j)2

βiβj
∥fi∥ ∥fj∥ .

Furthermore, if γ ≤ min (1/(2 · ηk,i · θk,i), 1/(2 · ηk,j · θk,j)),
then βi, βj > 0 and

⟨fi, fj⟩ = ± γ · θk,i · θk,j · (2k − i− j)2 ∥fi∥ ∥fj∥ .

We generalize the quadratic form of Lemma V.28 to linear
combinations of general pure balanced operators Y, namely,
to balanced operators.

Lemma V.32 (General Quadratic Form (restatement
of Lemma V.8)). Let ε ∈ (0, 1) and let Y ⊆ {Y | Y : Ck →
Ck} be a collection of formal operators that are product of
an equal number of up and down walks (i.e., pure balanced
operators) not exceeding ℓ walks. Let B =

∑
Y∈Y αYY

where αY ∈ R and let f =
∑k

i=0 fi with fi ∈ Ck
i . If

γ ≤ ε
(
16kk+2ℓ2

∑
Y∈Y |αY|

)−1
, then

⟨Bf, f⟩ =

k∑
i=0

(∑
Y∈Y

αYλY
k (i)

)
· ⟨fi, fi⟩ ± ε,

where λY
k (i) depends only on the operators appearing in

the formal expression of Y, i and k, i.e., λY
k (i) is the

approximate eigenvalue of Y associated to Ck
i .

We instantiate Lemma V.31 for swap walks with their
specific parameters. First, we introduce some notation. Us-
ing Corollary IV.13, we have

Sk,k =

k∑
j=0

(−1)k−j ·

(
k + j

k

)
·

(
k

j

)
· N(j)

k,k =

k∑
j=0

αj · N(j)
k,k,

where αj = (−1)k−j ·
(
k+j
k

)
·
(
k
j

)
.

Finally, we have all the pieces to prove Lemma V.6
restated below.

Lemma V.33 (Swap Quadratic Form (restatement
of Lemma V.6)). Let f =

∑k
i=0 fi with fi ∈ Ck

i .
Suppose X(≤ d) is a γ-HDX with d ≥ 2k. If
γ ≤ ε

(
64kk+423k+1

)−1
, then

⟨Sk,kf, f⟩ =

k∑
i=0

λk(i) · ⟨fi, fi⟩ ± ε,

where λk(i) depends on only on k an i, i.e., λk(i) is an
approximate eigenvalue of Sk,k associated to space Ck

i .



D. Rectangular Swap Walks Sk,l

We turn to the spectral analysis of rectangular swap walks,
i.e., Sk,l where k ̸= l. Recall that to bound σ2(Sk,k)
in Section V-A we proved that the spectrum of Sk,k for a
γ-HDX is close to the spectrum of S∆k,k using the analysis of
quadratic forms over balanced operators from Section V-C.
Then we appealed to the fact that S∆k,k is expanding since
it is the walk operator of the well known Kneser graph.
In this rectangular case, we do not have a classical result
establishing that S∆k,l is expanding, but we were able to
establish it Lemma V.34.

Lemma V.34. Let d ≥ k + l and ∆d(n) be the complete
complex. The second largest singular value σ2(S

∆
k,l) of the

swap operator S∆k,l on ∆d(n) is

σ2(S
∆
k,l) ≤ max

(
k

n− k
,

l

n− l

)
,

provided n ≥ Mk,l where Mk,l ∈ N only depends on k and
l.

Towards proving Lemma V.34 we first introduce a gener-
alization of Kneser graphs which we denote bipartite Kneser
graphs defined as follows.

Definition V.35 (General Bipartite Kneser Graph). Let X(≤
d) where d ≥ k+ l. We denote by KX(n, k, l) the bipartite
graph on (vertex) partition (X(k), X(l)) where s ∈ X(k)
is adjacent to t ∈ X(l) if and only if s∩ t is empty. We also
refer to graphs of the form KX(n, k, l) as bipartite Kneser
graphs.

It will be convenient to distinguish bipartite Kneser
graphs coming from general γ-HDX and the complete
complex ∆d(n).

Definition V.36 (Complete Bipartite Kneser Graph). Let
X(≤ d) where d ≥ k + l. If X is the complete complex,
i.e., X = ∆d(n), then we denote KX(n, k, l) as simply as
K(n, k, l) and we refer to it as complete bipartite Kneser.

We obtain the spectra of bipartite Kneser graphs gener-
alizing 7 the classical result of Fact V.4. More precisely, we
prove Lemma V.37.

Lemma V.37 (Bipartite Kneser Spectrum). The non-zero
eigenvalues of the (normalized) walk operator of K(n, k, l)
are ±λi where

λi =

(
n−k−i
l−i

)(
n−l−i
k−i

)(
n−k
l

)(
n−l
k

) ,

for i = 0, . . . ,min(k, l).

7Note that the singular values of K(n, k) can be deduced from the
bipartite case.

Now the proof follows a similar strategy to the Sk,k,
namely, we analyze quadratic forms over Sk,k using the
results from Section V-C

Let X(≤ d) where d ≥ k+l. Let Ak,l be the (normalized)
walk operator of KX(n, k, l), i.e.,

Ak,l =

⎛⎝ 0 S
(l)
k,l(

S
(l)
k,l

)†
0

⎞⎠ .

To determine the spectrum of Ak,l it is enough to consider

the spectrum of B = S
(l)
k,l

(
S
(l)
k,l

)†
. Using Corollary IV.13,

we have

B =

(
l∑

j=0

(−1)l−j

(
k + j

l

)
·

(
l

j

)
· N(j)

k,l

)
⎛⎝ l∑

j′=0

(−1)l−j′
(
k + j′

l

)
·

(
l

j′

)
·
(
N
(j′)
k,l

)†
⎞⎠

=

l∑
j,j′=0

αk,l,j,j′N
(j)
k,lN

(j′+k−l)
l,k ,

for some coefficients αk,l,j,j′ depending only on k, l, i, j
and j′. Since we have not yet used any specific property
of HDXs, these coefficients are the same for the complete
complex and general HDXs.

Lemma V.38. Let X(≤ d) be a γ-HDX with d ≥ k + l.
Let f =

∑k
i=0 fi with fi ∈ Ck

i . For ε ∈ (0, 1), if γ ≤
ε
(
64kk+2ℓ222k+4l+2

)−1
, then

⟨Bf, f⟩ =

k∑
i=0

⎛⎝ l∑
j,j′=0

αk,l,j,j′λk,l,j,j′(i)

⎞⎠ · ⟨fi, fi⟩ + ε,

where λk,l,j,j′(i) is the approximate eigenvalues of

N
(j)
k,lN

(j′+k−l)
l,k corresponding to space Ck

i . Furthermore,
λk,l,j,j′(i) depends only on k, l, i, j and j′.

Let B and B∆ stand for the B operator for general γ-HDX
and the complete complex, respectively.

Lemma V.39. Suppose X(≤ d) is a γ-HDX with d ≥ k+ l.
For ε ∈ (0, 1), if γ ≤ ε2

(
64kk+2ℓ222k+4l+2

)−1
, then the

second largest singular value σ2(B) of B is

σ2(B) ≤ ε2.

Furthermore, the second largest non-trivial eigenvalue
λ(Ak,l) of the walk matrix of K(n, k, l) is

λ(Ak,l) ≤ ε.

Now the proof of Theorem V.2 follows. For convenience,
we restate it.

Theorem V.40 (Rectangular Swap Walk Spectral Bound
(restatement of Theorem V.2)). Suppose X(≤ d) is a γ-
HDX with d ≥ k + l and k ≤ l. For σ ∈ (0, 1), if



γ ≤ σ2 ·
(
64kk+2ℓ222k+4l+2

)−1
, then the largest non-trivial

singular value σ2(Sk,l) of the swap operator Sk,l is

σ2(Sk,l) ≤ σ.

E. Bipartite Kneser Graphs - Complete Complex

Now we determine the spectrum of the complete bipartite
Kneser graph K(n, k, l). More precisely, we prove the
following.

Lemma V.41 (Bipartite Kneser Spectrum (restatement
of Lemma V.37)). The non-zero eigenvalues of the normal-
ized walk operator of K(n, k, l) are ±λi where

λi =

(
n−k−i
l−i

)(
n−l−i
k−i

)(
n−k
l

)(
n−l
k

) ,

for i = 0, . . . ,min(k, l).

Henceforth, set X = ∆d(n). To prove Lemma V.37 we
work with the natural rectangular matrix associated with
K(n, k, l), namely, the matrix W ∈ RX(k)×X(l) such that

W(s, t) = 1[s∩t=∅]

for every s ∈ X(k) and t ∈ X(l).
Observe that the entries of WW⊤ and W⊤W only depend

on the size of the intersection of the sets indexing the row
and columns. Hence, these matrices belong to the Johnson
scheme [GM15] J(n, k) and J(n, l), respectively. Moreover,
the left and right singular vectors of W are eigenvectors of
these schemes.

We adopt the eigenvectors used in Filmus’ work [Fil16],
i.e., natural basis vectors coming from some irreducible
representation of Sn (see [Sag13]). First we introduce some
notation. Let µ = (n − i, i) be a partition of n and let
τµ be a standard tableau of shape µ. Suppose the first row
τµ contains a1 < · · · < an−i whereas the second contains
b1 < · · · < bi. To τµ we associate the function φτµ ∈ R(

[n]
k )

as follows

φτµ = (1a1
− 1b1) . . . (1ai

− 1bi),

where 1a ∈ R(
n
k) is the containment indicator of element a,

i.e., 1a(s) = 1 if and only if a ∈ s. Filmus proved that{
φτµ | 0 ≤ i ≤ k, µ ⊢ (n− i, i), τµ standard

}
is an eigenbasis of J (n, k). We abuse the notation by
considering φτµ as both a function in R(

n
k) and R(

n
l) as

long as these functions are well defined.

Claim V.42. If µ = (n− i, i) and k, l ≥ i, then

Wφτµ = (−1)i ·
(
n− k − i

l − i

)
· φτµ .

Since we are working with singular vectors, we need to be
careful with their normalization when deriving the singular

values. We stress that the norm of φτµ depends on the space
where φτµ lies.

Claim V.43. If µ = (n− i, i) and φτµ ∈ R(
n
k), then

φτµ


2

=

√
2i
(
n− 2i

k − i

)
.

Now the singular values of W follow.

Corollary V.44 (Singular Values). The singular values of
W are

σi =

(
n− k − i

l − i

)
·

φk
τµ


2φl

τµ


2

,

for i = 0, . . . ,min(k, l).

Note that for k = l we recover the well know result
of Fact V.4.

Finally we compute the eigenvalues of the bipartite graph
K(n, k, l). Let An,k,l be its normalized adjacency matrix,
i.e.,

An,k,l =

(
0 1

(n−k
l )

W

1

(n−l
k )

W⊤ 0

)
.

Lemma V.45 (Bipartite Kneser Spectrum (restatement
of Lemma V.37)). The non-zero eigenvalues of the normal-
ized walk operator of K(n, k, l) are ±λi where

λi =

(
n−k−i
l−i

)(
n−l−i
k−i

)(
n−k
l

)(
n−l
k

) ,

for i = 0, . . . ,min(k, l).

VI. APPROXIMATING MAX-k-CSP

In the following, we will show that k-CSP instances I
whose constraint complex XI(≤ k) is a suitable expander
admit an efficient approximation algorithm. We will assume
throughout that XI(1) = [n], and drop the subscript I.

This was shown for 2-CSPs in [BRS11]. In extending this
result to k-CSPs we will rely on a central Lemma of their
paper. Before, we explain our algorithm we give a basic
outline of our idea:

We will work with the SDP relaxation for the k-CSP
problem given by L-levels of SoS hierarchy, as defined in
Section II-D (for L to be specified later). This will give
us an L-local PSD ensemble {Y1, . . . ,Yn}, which attains
some value SDP(I) ≥ OPT(I). Since {Y1, . . . ,Yn}, is
a local PSD ensemble, and not necessarily a probability
distribution, we cannot sample from it directly. Nevertheless,
since {Yj} will be actual probability distributions for all
j ∈ [n], one can independently sample ηj ∼ {Yj} and use
η = (η1, . . . , ηn) as the assignment for the k-CSP instance
I.



Unfortunately, while we know that the local distributions
{Ya}a∈X(k) induced by {Y1, . . . ,Yn} will satisfy the
constraints of I with good probability, i.e.,

E
a∼Πk

E
{Ya}

⎡⎣1[Ya satisfies the constraint on a  
⇐⇒Ya∈ Ca

]

⎤⎦
= SDP(I) ≥ OPT(I),

this might not be the case for the assignment η sam-
pled as before. It might be that the random variables
Ya1 , . . . ,Yak

are highly correlated for a ∈ X(k),
i.e., Ea∼Πk

∥{Ya} − {Ya1} · · · {Yak
}∥1 is large. One strat-

egy employed by [BRS11] to ensure that the quantity above
is small, is making the local PSD ensemble {Y1, . . . ,Yn}
be consistent with a randomly sampled partial assignment
for a small subset of variables (q.v. Section II-D). We
will show that this strategy is succesful if X(≤ k) is
a γ-HDX (for γ sufficiently small). Our final algorithm
is Algorithm VI.1.

Algorithm VI.1 (Propagation Rounding Algorithm).

Intput An L-local PSD ensemble {Y1, . . . ,Yn},
and a distribution Π on X(≤ ℓ).

Output A random assignment η : [n] → [q].

1) Choose m ∈ {1, . . . , L/ℓ} uniformly at random.
2) Independently sample m ℓ-faces,

sj ∼ Π for j = 1, . . . ,m.
3) Write S =

⋃m
j=1 sj , for the set of the seed vertices.

4) Sample assignment ηS : S → [q] according to the local
distribution, {YS}.

5) Set Y′ = {Y1, . . .Yn|YS = ηS}, i.e. the local
ensemble Y conditioned on agreeing with ηS .

6) For all j ∈ [n], sample independently ηj ∼ {Y′
j}.

7) Output η = (η1, . . . , ηn).

In our setting, we will apply Algorithm VI.1 with the dis-
tribution Πk and the L-local PSD ensemble {Y1, . . . ,Yn}.
Notice that in expectation, the marginals of Y′ on faces
a ∈ X(k) – which are actual distributions – will agree with
the marginals of Y, i.e. ES,ηS

EY′
a = EYa. In particular,

the approximation quality of Algorithm VI.1 will depend on
the average correlation of Y′

a1
, . . . ,Y′

ak
on the constraints

a ∈ X(k), where Y′ is the local PSD ensemble obtained at
the end of the first phase of Algorithm VI.1.

In the case where k = 2, the following is known

Theorem VI.2 (Theorem 5.6 from [BRS11]). Suppose a
weighted undirected graph G = ([n], E,Π2) and an L-local
PSD ensemble Y = {Y1, . . . ,Yn} are given. There exists
absolute constants c ≥ 0 and C ≥ 0 satisfying the following:
If L ≥ c · q

ε4 , Supp(Yi) ≤ q for all i ∈ V , and λ2(G) ≤
C · ε2/q2 then we have

E
{i,j}∼Π2

{Y′
i,Y

′
j} − {Y′

i}{Y′
j}

1
≤ ε,

where Y′ is as defined in Algorithm VI.1 on the input of
{Y1, . . . ,Yn} and Π1.

To approximate k-CSPs well, we will show the follow-
ing generalization of Theorem VI.2 for k-CSP instances
I, whose constraint complex X(≤ k) is γ-HDX, for γ
sufficiently small.

Theorem VI.3. Suppose a simplicial complex X(≤ k)
with X(1) = [n] and an L-local PSD ensemble Y =
{Y1, . . . ,Yn} are given.

There exists some universal constants c′ ≥ 0 and C ′ ≥ 0
satisfying the following: If L ≥ c′ ·(qk ·k5/ε4), Supp(Yj) ≤
q for all j ∈ [n], and X is a γ-HDX for γ ≤ C ′ · ε4/(k8+k ·
26k · q2k). Then, we have

E
a∼Πk

{Y′
a} −

{
Y′

a1

}
· · ·
{
Y′

ak

}
1
≤ ε, (3)

where Y′ is as defined in Algorithm VI.1 on the input of
{Y1, . . . ,Yn} and Πk.

Indeed, using Theorem VI.3, it is straightforward to prove
the following,

Corollary VI.4. Suppose I is a q-ary k-CSP instance whose
constraint complex X(≤ k) is a γ-HDX.

There exists absolute constants C ′ ≥ 0 and c′ ≥ 0,
satisfying the following: If γ ≤ C ′ · ε4/(k8+k · 26k · q2k),
there is an algorithm that runs in time nO(k5·q2k·ε−4) based
on ( c

′·k5·qk
ε4 )-levels of SoS-hierarchy and Algorithm VI.1

that outputs a random assignment η : [n] → [q] that in
expectation ensures SATI(η) = OPT(I)− ε.

Our proof of Theorem VI.38 will hinge on the fact
that we can upper-bound the expected correlation of a
face of large cardinality ℓ, in terms of expected correla-
tion over faces of smaller cardinality and expected cor-
relations along the edges of a swap graph. The swap
graph here is defined as a weighted graph Gℓ1,ℓ2 =
(X(ℓ1) ⊔X(ℓ2), E(ℓ1, ℓ2), wℓ1,ℓ2), where

E(ℓ1, ℓ2) =

{
{a, b} :

a ∈ X(ℓ1), b ∈ X(ℓ2),
and a ⊔ b ∈ X(ℓ1 + ℓ2)

}
.

We will assume ℓ1 ≥ ℓ2, and if ℓ1 = ℓ2 we are going
to identify the two copies of every vertex. We will endow
E(ℓ1, ℓ2) with the weight function,

wℓ1,ℓ2(a, b) =
Πℓ1+ℓ2(a ⊔ b)(

ℓ1+ℓ2
ℓ1

) ,

which can easily be verified to be a probability distribution
on E(ℓ1, ℓ2) Notice that in the case where ℓ1 ̸= ℓ2 the
random walk matrix of Gℓ1,ℓ2 is given by

Aℓ1,ℓ2 =

(
0 Sℓ1,ℓ2

S†ℓ1,ℓ2 0

)
,

8Due to space constraints, we will omit some details. The full proof can
be found in the full version of our paper [AJT19].



and if ℓ1 = ℓ2 we have Aℓ1,ℓ1 = Sℓ1,ℓ1 . The stationary
distribution of Aℓ1,ℓ2 is Πℓ1,ℓ2 defined by,

Πℓ1,ℓ2 (b) =
1[b ∈ X(ℓ1)]

2
·Πℓ1 (b) +

1[b ∈ X(ℓ2)]

2
·Πℓ2 (b). (4)

When we write an expectation of f(•, •) over the edges in
E(ℓ1, ℓ2) with respect to wℓ1,ℓ2 , it is important to note,

E
{s,t}∼wℓ1,ℓ2

[f(s, t)] =
∑

{s,t}∈E(ℓ1,ℓ2)

Πℓ1+ℓ2(s ⊔ t),(
ℓ1+ℓ2
ℓ1

) · f(s, t),

=
1(
ℓ
ℓ1

) E
a∼Πk

⎡⎣ ∑
{s,t}∼a

f(s, t)

⎤⎦ , (5)

where sum within the expectation in the RHS runs over the(
ℓ1+ℓ2
ℓ1

)
possible ways of splitting a into s ⊔ t such that

s ∈ X(ℓ1) and t ∈ X(ℓ2). When we are speaking about
the spectral expansion of Gℓ1,ℓ2 , we will be speaking with
regards to λ2(Gℓ1,ℓ2) and not with regards to σ2(Gℓ1,ℓ2).

Remark VI.5. By simple linear algebra, we have

λ2(Gℓ1,ℓ2) := λ2(Aℓ1,ℓ2) ≤ σ2(Sℓ1,ℓ2),

where we employ the notation λ2(M) to denote the second
largest eigenvalue (signed) of the matrix M.

With this, we will show

Lemma VI.6 (Glorified Triangle Inequality). For a simpli-
cial complex X(≤ k), ℓ1 ≥ ℓ2 ≥ 0, ℓ = ℓ1 + ℓ2, ℓ ≤ k, and
an ℓ-local ensemble {Y1, . . . ,Yn}, one has

E
a∈Πℓ

{Ya} −
ℓ∏

i=1

{Yai}


1

≤ E
{s,t}∼wℓ1,ℓ2

∥{Ys,Yt} − {Ys}{Yt}∥1

+ E
s∼Πℓ1

{Ys} −
ℓ1∏
i=1

{Ysi}


1

+ E
t∼Πℓ2

{Yt} −
ℓ2∏
i=1

{Yti}


1

(6)

One useful observation, is that by using Lemma VI.6
repeatedly, we can reduce the problem of bounding
Ea∈Πℓ

{Ya} −
∏ℓ

i=1{Yai}

1

to a problem of bounding

E
{s,t}∼wℓ1,ℓ2

∥{Ys,Yt} − {Ys}{Yt}∥1,

for ℓ1 + ℓ2 ≤ k. Though it is not a direct implication, it
is heavily suggested by Fact II.7 and Theorem VI.2, that if
Gℓ1,ℓ2 is a good spectral expander, after an application of
Algorithm VI.1 with our chosen parameters, we should be
able to bound these expressions. Using a key lemma used
from [BRS11], we will prove that this is indeed the case.
The only thing we need to make sure after this point, is
that the second eigenvalue λ2(Gℓ1,ℓ2) of the swap graphs
Gℓ1,ℓ2 we will be using are small enough for our purposes.
Indeed, our choice of γ in Theorem VI.3 and Corollary VI.4
is to make sure that the bound we get on λ2(Gℓ1,ℓ2) from
Theorem V.2 (together with Remark VI.5) is good enough
for our purposes.

A. Breaking Correlations for Expanding CSPs

Throughout this section, we will use the somewhat non-
standard definition of variance introduced in [BRS11],

Var [Ya] =
∑

η∈[q]a

Var [1[Ya = η]] .

We will use the following central lemma from [BRS11]
in our proof of Theorem VI.3:

Lemma VI.7 (Lemma 5.4 from [BRS11]). Let G =
(V,E,Π2) be a weighted graph, {Y1, . . . ,Yn} a local PSD
ensemble, where we have Supp(Yi) ≤ q for every i ∈ V ,
and q ≥ 0. Suppose ε ≥ 0 is a lower bound on the expected
statistical difference between independent and correlated
sampling along the edges,i.e.,

ε ≤ E
{i,j}∼Π2

∥{Yij} − {Yi}{Yj}∥1.

There exists absolute constants c0 ≥ 0 and c1 ≥ 0 that
satisfy the following: If λ2(G) ≤ c0 · ε2

q2 . Then, conditioning
on a random vertex decreases the variances,

E
i∼Π1

E
j∼Π2

E
{Yj}

Var [Yi | Yj ] ≤ E
i∼Π1

[Var [Yi]]− c1 ·
ε2

q2
.

For our applications, we will be instantiating Lemma VI.7
with Gℓ1,ℓ2 as G; and with the local PSD ensem-
ble {Ya}a∈X that is obtained from {Y1, . . . ,Yn}
(q.v. Fact II.7). For convenience, we will write the concrete
instance of the Lemma that we will use,

Corollary VI.8. Let ℓ1 ≥ ℓ2 ≥ 0 satisfying ℓ1 + ℓ2 ≤
k be given parameters, and let Gℓ1,ℓ2 be the swap graph
defined for a γ-HDX X(≤ k). Let {Ya}a∈X be a local
PSD ensemble; satisfying Supp(Ya) ≤ qk for every a ∈
X(ℓ1) ∪X(ℓ2) for some q ≥ 0. Suppose ε ≥ 0 satisfies,

ε

4k
≤ E

{s,t}∈wℓ1,ℓ2

∥{Ys⊔t} − {Ys}{Yt}∥1.

There exists absolute constants c0 ≥ 0 and c2 ≥ 0 that
satisfy the following: If λ2(G) ≤ c0 · (ε/(4k · qk))2. Then,
conditioning on a random face a ∼ Πℓ1,ℓ2 decreases the
variances, i.e.

E
a,b∼Π2

ℓ1,ℓ2

E
{Ya}

[Var [Yb | Ya]]

≤ E
b∼Πℓ1,ℓ2

[Var [Yb]]− c2 ·
ε2

16 · k2 · q2k
.

Here, it can be verified that the expansion criterion
presupposed by Lemma VI.7 is satisfied by Corollary VI.8
by Theorem V.2.



VII. HIGH-DIMENSIONAL THRESHOLD RANK

In [BRS11], Theorem VI.2 was proven for a more general
class of graphs than expander graphs – namely, the class of
low threshold rank graphs.

Definition VII.1 (Threshold Rank of Graphs
(from [BRS11])). Let G = (V,E,w) be a weighted graph
on n vertices and A be its normalized random walk matrix.
Suppose the eigenvalues of A are 1 = λ1 ≥ · · · ≥ λn.
Given a parameter τ ∈ (0, 1), we denote the threshold rank
of G by rank≥τ (A) (or rank≥τ (G)) and define it as

rank≥τ (A) := |{i|λi ≥ τ}| .

There [BRS11], the authors asked for the correct notion
of threshold rank for k-CSPs. In this section, we give a
candidate definition of low threshold rank motivated by our
techniques.

To break k-wise correlations it is sufficient to assume that
the involved swap graphs in the foregoing discussion are
low threshold rank since this is enough to apply a version
of Lemma VI.7, already described in the work of [BRS11].

Moreover, we have some flexibility as to which swap
graphs to consider as long as they satisfy some splitting
conditions. To define a swap graph it is enough to have a
distributions on the hyperedges of a (constraint) hypergraph.
Hence, the notion of swap graph is independent of high-
dimensional expansion. HDXs are just an interesting family
of objects for which the swap graphs are good expanders.

To capture the many ways of splitting the statistical
distance over hyperedges into the statistical distance over the
edges of swap graphs, we first define the following notion.
We say that a binary tree T is a k-splitting tree if it has
exactly k leaves. Thus, labeling every vertex with the number
of leaves on the subtree rooted at that vertex ensures,

- the root of T is labeled with k and all other vertices
are labeled with positive integers,

- the leaves are labeled with 1, and
- each non-leaf vertex satisfy the property that its label

is the sum of the labels of its two children.
Note that, we will think of each non-leaf node with left

and right children labeled as a and b as representing the
swap graph from X(a) to X(b) for some simplicial complex
X(≤ k). Let Swap(T , X) be the set of all such swap graphs
over X finding representation in the splitting tree T . Indeed
the tree T used in the proof of Theorem VI.3 is just one
special instance of a k-splitting tree.

Given a threshold parameter τ ≤ 1 and a set of normal-
ized adjacency matrices A = {A1, . . . ,As}, we define the
threshold rank of A as

rank≥τ (A) := max
A∈A

rank≥τ (A),

where rank≥τ (A) is denotes usual threshold rank of A as
in Definition VII.1.

Now, we are ready to define the notion of a k-CSP
instance being (T , τ, r)-splittable as follows.

Definition VII.2 ((T , τ, r)-splittability). A k-CSP instance
I with the constraint complex X(≤ k) is said to be (T , τ, r)-
splittable if T is a k-splitting tree and

rank≥τ (Swap(T , X)) ≤ r.

If there exists some k-splitting tree T such that I is (T , τ, r)-
splittable, the instance I will be called a (τ, r)-splittable
instance.

Now, using this definition we can show that whenever
rankτ (I) is bounded for the appropriate choice of τ , after
conditioning on a random partial assignment as in Algo-
rithm VI.1 we will have small correlation over the faces
a ∈ X(k), i.e.,

Theorem VII.3. Suppose a simplicial complex X(≤ k)
with X(1) = [n] and an L-local PSD ensemble Y =
{Y1, . . . ,Yn} are given. There exists some universal con-
stants c4 ≥ 0 and C ′′ ≥ 0 satisfying the following: If
L ≥ C ′′ · (q4k · k7 · r/ε5), Supp(Yj) ≤ q for all j ∈ [n],
and I is (c4 · (ε/(4k · qk))2, r)-splittable. Then, we have

E
a∈X(k)

{Y′
a} −

{
Y′

a1

}
· · ·
{
Y′

ak

}
1
≤ ε, (7)

where Y′ is as defined in Algorithm VI.1 on the input of
{Y1, . . . ,Yn} and Πk.

It is important to note that the specific knowledge of the
k-splitting tree T that makes I (T , τ, r)-splittable is only
needed for the proof of Theorem VII.3. The conclusion of
Theorem VII.3 can be used without the knowledge of the
specific k-splitting tree T . Theorem VII.3 can be thought
of an extension of Theorem VI.3 to the case where not
necessarily every tree is good, and where we can bound
the threshold rank instead of the spectral expansion.

This, will readily imply an algorithm

Corollary VII.4. Suppose I is a q-ary k-CSP instance
whose constraint complex is X(≤ k). There exists an abso-
lute constant C ′′ ≥ 0 and c4 ≥ 0 that satisfies the following:
If I is (c4 · (ε/(4k · qk))2, r)-splittable, then there is an

algorithm that runs in time n
O
(

q4k·k7·r
ε5

)
and that is based

on (C
′′·k5·qk·r

ε4 )-levels of SoS-hierarchy and Algorithm VI.1
that outputs a random assignment η : [n] → [q] that in
expectation ensures SATI(η) = OPT(I)− ε.

We will need the more general version of Lemma VI.7,
proved in [BRS11].

Lemma VII.5 (Lemma 5.4 from [BRS11]). 9Let G =
(V,E,Π2) be a weighted graph, {Y1, . . . ,Yn} a local PSD

9The parameters we get differ from those of [BRS11]. The derivation
of our parameters can be found in the appendix of the full version of this
paper [AJT19].



ensemble, where we have Supp(Yi) ≤ q for every i ∈ V ,
and q ≥ 0. If ε ≥ 0 is a lower bound on the expected
statistical difference between independent and correlated
sampling along the edges,i.e.,

ε ≤ E
{i,j}∼Π2

∥{Yij} − {Yi}{Yj}∥1.

There exists absolute constants c3 ≥ 0 and c4 ≥ 0 that
satisfy the following: Then, conditioning on a random vertex
decreases the variances,

E
i∼Π1

E
j∼Π1

E
{Yj}

Var [Yi | Yj ]

≤ E
i∼Π1

[Var [Yi]]− c3 ·
ε4

q4 · rank≥c4ε2/q2(G)
.

Since we will use this lemma, only with the swap graphs
Gℓ1,ℓ2 and (L/k)-local PSD ensemble {Ya}a∈X obtained
from the L-local PSD ensemble {Y1, . . . ,Yn}, for con-
venience we will write the corollary we will use more
explicitly

Corollary VII.6. Let ℓ1 ≥ ℓ2 ≥ 0 satisfying ℓ1 + ℓ2 ≤
k be given parameters, and let Gℓ1,ℓ2 be the swap graph
defined for a γ-HDX X(≤ k). Let {Ya}a∈X be a local
PSD ensemble; and suppose we have Supp(Ya) ≤ qk for
every a ∈ X(ℓ1) ∪ X(ℓ2) for some q ≥ 0. Suppose ε > 0
satisfies,

ε

4k
≤ E

{s,t}∈E(ℓ1,ℓ2)
∥{Ys∪t} − {Ys}{Yt}∥1.

There exists absolute constants c3 ≥ 0 and c5 ≥ 0 that
satisfy the following:
If rank≥c4·(ε/(4k·qk))2(Gℓ1,ℓ2) ≤ r, then conditioning on a
random face a ∼ Πℓ1,ℓ2 decreases the variances, i.e.

E
a,b∼Π2

ℓ1,ℓ2

E
{Ya}

Var [Yb | Ya]

≤ E
s∼Πℓ1,ℓ2

[Var [Yb]]− c5 ·
ε4

256 · k4 · q4k · r
.
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